
Norbert Fuhr

Information Retrieval Methods for Literary Texts

Abstract

Information retrieval focuses on content-based searching in text docu-
ments. For this purpose, first text content must be represented, by using
a representation language (like thesauri or classification schemes) or by
performing free-text search. The latter approach uses either string-based
or computer-linguistic methods (stemming, dictionary lookup, syntax
analysis). For retrieval, weighting and ranking methods give better results
than Boolean retrieval, and some of them also allow for relevance feed-
back. Retrieval of XML documents requires new methods for support
weighting and ranking, specificity-oriented search, data types with vague
predicates and vague structural conditions.

1. Introduction

Information Retrieval (IR) deals with vagueness and uncertainty in in-
formation systems. The most important application of this concept is
content-based retrieval of texts. In this paper, we will give an introduc-
tion into the state of the art of text retrieval.

Text retrieval consists of two major tasks:

1. Content representation: In order to allow an IR system to perform re-
trieval, first the content of the text documents must be represented
in some form (for example, as a set of words).

2. Indexing and retrieval: Given the representations of documents, the
system retrieves documents by comparing their representations with
the query (given for example, as a Boolean combination of words).

The following two sections deal with these two steps. In section 4, we
describe the extension of these concepts for the case of XML retrieval.

2. Text representation

In principle, there are two basic approaches for representing the content
of texts: Either the system searches directly in the natural language texts

2

(so-called ›free text search‹), or a specific representation language is introdu-
ced, onto which documents and queries have to be mapped.

Examples of representation language approach are classical schemes
like classification and thesauri, as well as new languages developed in the
context of the ›Semantic Web‹, like for example, RDF [Miller 98]. Al-
though representation languages may be able to overcome some of the
limitations of the free text approach, there are two major drawbacks:

• The mapping problem: Creating the representation of a document
still has to be performed manually in most cases (for classifications,
there are good automatic methods, but they need at least training
samples of reasonable size).

• Handling of uncertainty and vagueness: especially for the new repre-
sentation languages, appropriate methods are not available yet, and so
these approaches still struggle with the well-known problems of
Boolean retrieval (see also next section).

In this paper, we will focus on free text search. Retrieval problems in this
area are caused by inflected and derived forms of words, synonyms,
homonyms, compound words and noun phrases.

Most of today’s systems (for example, Web search engines) still use a
string processing approach: First the text is split into a sequence of
words (delimited by blanks or punctuation symbols). Besides searching
directly for these words, there are truncation and context operators: The
former apply string matching on single words, in order to deal with in-
flected and derived forms (for example, ›comput*‹ would search for all
words starting with the letters ›comput‹, like computer, computing).
Context operators consider the sequence of words and allow for specifi-
cation of word distance or word order, in order to handle noun phrases
(for example, ›computer adj(2) systems‹ would allow for up to two words
occurring between ›computer‹ and ›systems‹).

The computer linguistic approach applies linguistic methods at the mor-
phological and syntactical level of texts. Morphology deals with inflected
and derived forms of words. Here stemming methods aim at reducing
words to their non-inflected form or to their word stem. For many lan-
guages, the corresponding algorithms are string-based, like the popular
Porter stemmer for English [Porter 80]* or the GERTWOL system for
German [Haapalainen & Majorin 94] (for example, a stemmer for Eng-
lish might contain the rule ›ing‹ → « for reducing verbs to their infiniti-
ve). However, for heavily inflected languages like for example, German
or Finnish, dictionary-based methods may be more appropriate; in this
case, the dictionary contains for example, the reduced word form and a

3

reference to the rule set for generating the inflected forms (like for ex-
ample, the MORPHIX system for German [Finkler & Neumann 86]).

Dictionaries are also used for disambiguation of homonyms. For Eng-
lish, the WordNet system1 has been used by several researchers in order
to solve this problem. However, none of them has been able to show
that this approach improves retrieval quality (partly due to the uncer-
tainty with which this disambiguation can be performed). So word sense
disambiguation still is an open issue.

At the syntactical level, methods from computer linguistics are used for
analyzing noun phrases, in example deciding whether a noun phrase
from the query occurs in the text (for example, in the text passage
›...storing images and text retrieval‹, the phrase ›image retrieval‹ would be
located by context operators, but not by a syntactic method). So far,
work in this area has not produced convincing results, thus the most
effective retrieval methods still do not consider phrases at all.

So state-of-the-art retrieval systems mainly use stemming methods for
transforming a text into a sequence of words in reduced form. This se-
quence, in turn, is regarded either as a set or a multi-set (with multiple
occurrences of elements) of so-called terms, which forms the input to
the indexing step.

Below, we give an example of this procedure. Assume that we have a
document with the following text:

Experiments with Indexing Methods.
The analysis of 25 indexing algorithms has not produced consi-
stent retrieval performance. The best indexing technique for re-
trieving documents is not known.

Here we have underlined the so-called stop words. Since they do not
carry any meaning, but make up roughly 50 % of the text, they are
usually excluded from the further processing:

experiments indexing methods analysis indexing algorithms pro-
duced consistent retrieval performance best indexing technique
retrieving documents known.

The derivative endings are underlined here, which are removed by the
stemming algorithm, thus yielding:

experiment index method analys index algorithm produc consi-
stent retriev perform best index techni retriev document.

1 <http://www.cogsci.princeton.edu/~wn/>.

4

Transforming this result into a multi-set, we finally get

[(algorithm,1), (analys,1), (best,1), (consistent,1), (document,1),
(experiment,1), (index,2), (method,1), (perform,1), (produc,1),
(retriev,2), (techni,1)]

3. Indexing and retrieval

Given a document representation as described above, indexing deals
with the problem of assigning weights to the terms in the representation.
These weights, in turn, are used by the retrieval method for computing a
retrieval status value (RSV) for a document with respect to a given query.
Then documents are ranked according to ascending RSVs.

In binary indexing (for example, used in Boolean retrieval), each term in
the representation is assigned a weight of 1, and all other terms get a
zero weight. However, this method does not distinguish between ›im-
portant‹ words of a document and those that occur just by chance.

For many years, heuristic methods for document indexing have been
developed. Most of them are based on the following general ideas:

1. The less frequent a term occurs in a document collection, the more
significant it is.

2. The more frequent a term occurs in a document, the more im-
portant it is for this document.

3. Since longer documents contain more (and more frequent) terms,
these terms should be given lower weights than in shorter docu-
ments.

Based on these concepts, different variants of the so-called
weighting formula have been developed. Here we give a typical example.
Let denote a term and a document, then we define the following pa-
rameters:

set of terms occurring in ,

length of document ,

average length of a document in the collection,

document frequency of (number of documents containing),

within-document frequency of term in document ,

number of documents in the collection.

5

Now the significance of term in a collection can be measured by the
inverse document frequency, which is defined as follows

The normalized term frequency measures the relative importance of
term in the document :

Then the document indexing weight of term in document is defined
as the product of these two parameters:

Once the documents are indexed, retrieval can performed. Classical re-
trieval systems are using Boolean retrieval for this purpose, but formulation
of Boolean queries is very difficult for inexperienced users; moreover,
the resulting retrieval quality is rather poor. For this reason, most current
retrieval methods use linear query formulations, where a query is just a
set of terms.

The most popular retrieval model is still the vector space model [Salton
71], based on a geometric interpretation where documents and queries
are points in a vector space spanned by the terms of the collection. (see
Figure 1).

t2

q

d

d

1

2

Figure 1: Query and document vectors in the vector space model

Let denote the set of terms occurring in the collection,
then a document is represented as a vector , where is the
indexing weight for the term , as given by the indexing function descri-
bed above. In a similar way, a query is usually represented as a vector

6

; here the weights denote the number of occurrences of the
term in the query formulation given by the user.

Based on these specifications of document and query vectors, the re-
trieval function computing the RSV for a query-document pair can be
defined as a vector similarity measure. Figure 1 shows an example where
document is obviously more similar to the query than document
(for example, measured by the angle between query and document vec-
tor). In most cases, the scalar product is used as similarity measure:

term
information 1 0.3 0 0.4 0.2

retrieval 1 0 0.2 0.1 0.3
literary 1 0.3 0 0 0.1

text 1 0.1 0.3 0 0.2
0.3 0.5 0.5 0.8

Table 1: Retrieval example for the scalar product retrieval function

Table 1 shows an example with the query ›information retrieval literary
text‹ and four documents.

-
-

-
-

-

-

+
+

+

+
+

+

+

-

- +

+
t

t

1

2

Figure 2: Relevance feedback in the vector space model

In general, this method gives already a very high retrieval quality. Further
improvements are possible by applying relevance feedback. This method
assumes that the user first submits a query and then judges the relevance
of some of the answer documents. Based on these judgments, it modifies
the query term weights and performs another retrieval run, which typi-
cally leads to a significantly higher retrieval quality. In the vector space
model, the system computes the centroid of the relevant documents as

7

well as the one of the irrelevant documents. Let () denote the set
of relevant (irrelevant) Documents, then the two centroids can be com-
puted as

Theoretically, the optimum query vector now is defined as the connec-
ting vector of these centroids, in example . Figure 2 shows an
example, where relevant documents are marked as ›+‹ and irrelevant
ones as › – ‹; all documents on the dashed line (which is perpendicular to
the optimum query vector) are given the same RSV (note that the opti-
mum vector in our example does not achieve a perfect separation of
relevant and nonrelevant documents). However, the optimum query
vector does not yield good results when applied to the remaining docu-
ments in the collection (which is the major purpose of relevance feed-
back). This effect is due to overfitting to the (usually small) training
sample of judged documents. In order to avoid this problem, a heuristic
combination of this optimum vector and the original query vector is
computed, where also relevant and irrelevant documents are given diffe-
rent influence. Let denote the original query vector, then the improved
query vector is computed as

Here and are heuristic constants, which have to be set according to
the type of the collection and the number of documents actually judged
(for example and).

4. XML retrieval

Since a few years, documents in XML format are available. This docu-
ment format allows for logical markup of texts both at the macro level
and at the micro level, where the former describes the overall logical
structure of the document down to the paragraph level (for example,
chapter, section, paragraph) and the latter is used for marking one or
multiple tokens/terms for describing their special semantics (for examp-
le, linguistic categories of words or phrases).

Thus, there is the need for retrieval methods that take this structure
into account, by allowing for query conditions referring to the content of
specific elements or specifying the type of the result elements.

8

For describing the XML retrieval concepts, we use an example XML
document along with its visualization as a tree structure shown in Figu-
re 3, where elements are shown as ellipses and the content of leaf nodes
(the document text itself) is depicted as rectangular boxes with round
corners.

<book>
 <author>John Smith</author>
 <title>XML Retrieval</title>
 <chapter>
 <heading>Introduction</heading>
 This text explains all about XML and IR.
 </chapter>
 <chapter>
 <heading>
 XML Query Language XQL
 </heading>
 <section>
 <heading>Examples</heading>
 </section>
 <section>
 <heading>Syntax</heading>
 Now we describe the XQL syntax.
 </section>
 </chapter>
</book>

author

John Smith

title

XML Retrieval Introduction

chapter

heading This. . .

heading

SyntaxExamples

heading

sectionheading

XML Query
Language XQL

section

We describe
syntax of XSL

chapter

book

Figure 3: Example XML document tree

As a basic query language, the World Wide Web Consortium (W3C) has
defined XPath [?], which we explain briefly in the following. XPath re-
trieves elements (for example, subtrees) of the XML document fulfilling
the specified condition. The simplest kind of query specifies elements by
giving their names, for instance, the query heading retrieves the four
different heading elements from our example document. Context can be
considered by means of the child operator ›/‹ between two element na-
mes, so section/heading retrieves only headings occurring as child-
ren of sections, or by the descendant operator (›//‹), so that
book//heading finds headings which are descendants of a book ele

9

ment. Wildcards can be used for element names, as in chap-
ter/*/heading. A ›/‹ at the beginning of a query refers to the root
node of documents (for example, the query /book/title specifies that
the book element should be the root element of the document).

The filter operator (denoted with square brackets) filters the set of
nodes to its left. For example, //chapter[heading] retrieves all
chapters which have a heading. (In contrast, //chapter/heading re-
trieves the heading elements of these chapters.) Explicit reference to the
context node is possible by means of the dot (.): //chapter[.//
heading] searches for a chapter containing a heading element as
descendant.

Square brackets are also used for subscripts indicating the position of
children within an element, with separate counters for each element type;
for example //chapter/section[2] refers to the second section in a
chapter (which is the third child of the second chapter in our example
document). In order to pose restrictions on the content of elements and
the value of attributes, comparisons can be formulated. For example,
/book[author = »John Smith«] refers to the value of the element
author. For considering the sequence of elements, the operators before
and after can be used, as in //chapter[section/heading =
»Examples« before section/heading = »Syntax«].

These features of XPath allow for flexible formulation of conditions
with respect to the structure and the content of XML documents. The
result is always a set of elements from the original document(s).

From an information retrieval point of view, however, XPath lacks a
number of features in order to support vagueness and uncertainty in this
area:

• weighting and ranking,
• specificity-oriented search,
• data types with vague predicates,
• structural relativism.

We have developed the query language XIRQL and the retrieval engine
HyREX2 which extend XPath by these features. Below, we describe each
of these issues.

Weighting and ranking. As discussed before, document term weighting as
well as query term weighting are necessary tools for effective retrieval in
textual documents. So query conditions referring to the text of elements

2 <http://www.is.informatik.uni-duisburg.de/projects/hyrex/index.html>.

10

should consider index term weights. Furthermore, linear query formula-
tions with query term weighting (as in the vector space model described
above) should also be possible, by introducing a weighted sum operator
(for example 0.6 »XML« + 0.4 »retrieval«). These weights should be
used for computing an overall retrieval score for the elements retrieved,
thus resulting in a ranked list of elements.

The basic idea for assigning indexing weights to document terms is
that the weight of a term depends on its context. So we split up a docu-
ment into disjoint contexts which we call index nodes; based on the
DTD, index nodes are specified by giving the names of those elements
that form the roots of important and ›semantically coherent‹ subtrees of
XML documents. Figure 3 shows an example where index nodes are
marked as dashed boxes. For each term in such a context, the indexing
weight is computed by using standard weighting functions like for ex-
ample .

Specificity-oriented search. The query language should also support traditional
IR queries, where only the requested content is specified, but not the
type of elements to be retrieved. In this case, the IR system should be
able to retrieve the most relevant elements, which are typically the most
specific elements that satisfy the query. In the presence of weighted in-
dex terms, the tradeoff between these weights and the specifity of an
answer has to be considered, for example, by an appropriate weighting
scheme.

For this purpose, we introduce the concept of augmentation. The in-
dex weights of the most specific index nodes are given directly. For re-
trieval of the higher-level objects, we have to combine the weights of the
different text units contained. When propagating indexing weights to the
higher-level objects, they are down-weighted (multiplied by an augmen-
tation weight), such that, in general, more specific results get higher re-
trieval weights.

In addition, since not all elements of a document may be reasonable
answers for specificity-oriented queries, we restrict the set of possible
answers to the roots of index nodes. For example, consider the specifi-
city-oriented query ›syntax example‹. In the document shown in Figu-
re 3, there is no single index node matching this query; however, the
rightmost chapter satisfies all conditions, when we propagate the weights
of the two query terms up to this level. In contrast, a query for ›XSL‹
would yield the highest weight for the last section, whereas the compri-
sing chapter would be returned with a lower weight.

11

Data types and vague predicates. The standard IR approach for weighting
supports vague searches on plain text only. XML allows for a fine
grained markup of elements, and thus, there should be the possibility to
use special search predicates for different types of elements. For examp-
le, for an element containing person names, similarity search for proper
names should be offered; in technical documents, elements containing
measurement values should be searchable by means of the comparison
predicates and operating on floating point numbers. Thus, there
should be the possibility of having elements of different data types, whe-
re each data type comes with a set of specific search predicates. In order
to support the intrinsic vagueness of IR, most of these predicates should
be vague (for example, search for measurements that were taken at about
20 C).

We characterize data types by their sets of vague predicates (such as
phonetic similarity of names, English versus French stemming). In prin-
ciple, data types with vague predicates generalize text indexing methods
for all kinds of data. Thus, the considerations regarding the probabilistic
interpretation of weights apply here as well.

Structural relativism. In order to allow for vagueness in connection with
structural query conditions, we include methods for supporting structural
relativism. For example, a user may wish to search for a value of a speci-
fic data type in a document (for example, a person name), without bo-
thering about the element names; based on our notion of datatypes, we
allow for searches covering all elements of a specific data type.

As a more general approach, we are considering semantic relations-
hips between element names. Specifically, hierarchies over elements can
be modeled. For example, consider a query with a similarity search con-
dition region »India« . Here region is an element name that needs to be
matched, with the additional condition that the element content contains
the term »India«. The unary similarity operator denotes that the element
name does not need to occur literally but should rather be matched ›se-
mantically‹. Assuming that region is a sub-property of the more general
element named geographic-area, which in turn has additional sub-properties
continent and country, we would expand the original element name region
into the disjunction region country continent.

5. Summary and conclusion

In this paper, we have given a brief survey over current IR methods. By
taking into account the intrinsic uncertainty and vagueness of IR, simple

12

representation schemes and statistical indexing and retrieval methods
yield a good retrieval quality and outperform more ambitious approa-
ches. For retrieval of XML documents, appropriate methods have been
developed recently.

Both for retrieval of unstructured text (TREC3) as well as of XML
documents (INEX4), there are evaluation initiatives where dozens of
research groups apply their retrieval methods on the same test collecti-
ons, thus yielding valid statements about the quality of the different ap-
proaches.

For more details about the methods mentioned in this article (and al-
ternative approaches not described here), the reader should consult a
standard IR textbooks like for example, [Baeza-Yates & Ribeiro-Neto
99], [Belew 00], and [Ferber 03].

References

Baeza-Yates, R./Ribeiro-Neto, B.: Modern Information Retrieval. Addison
Wesley 1999.

Belew, R.: Finding Out About. A Cognitive Perspective on Search Engine
Technology and the WWW. Cambridge, UK: Cambridge University Press 2000.

Boag, S./Chamberlin, D./Fernandez, M.-F./Florescu, D./Robie, J./Simeon, J.:
XQuery 1.0: An XML Query Language. Technical report, World Wide Web
Consortium. <http://www.w3.org/TR/xquery/> 2002.

Buxton, S./Rys, M.: XQuery and XPath Full-Text Requirements. Technical
report, World Wide Web Consortium. <http://www.w3.org/TR/xmlquery-full-
text-requirements/> 2003.

Clark, J./DeRose, S.: XML Path Language (XPath) Version 1.0. Technical re-
port, World Wide Web Consortium. <http://www.w3.org/TR/xpath20/>
1999.

Ferber, R.: Information Retrieval. Suchmodelle und Data-Mining-Verfahren für
Textsammlungen und das Web. Heidelberg 2003.

Finkler, W./Neumann, G.: Ein hochportabler Lemmatisierungsmodul für das
Deutsche. Saarbrücken: Forschungsbericht 8, Universität des Saarlandes, FB
Informatik 1986.

Haapalainen, M./Majorin, A.: GERTWOL: Ein System zur automatischen
Wortformerkennung Deutscher Wörter. Technical report, Lingsoft Inc.

3 <http://trec.nist.gov/>.
4 <http://www.is.informatik.uni-duisburg.de/projects/inex/index.html>.

13

<http://www.ifi.unizh.ch/CL/volk/LexMorphVorl/Lexikon04.Gertwol.html>
1994.

Miller, E.: An Introduction to the Resource Description Framework.In: D-Lib
Magazine 4/5 1998.

Porter, M. F.: An Algorithm for Suffix Stripping.In: Program 14 (1980), pp. 130-
137.

Salton, G.: (Ed.): The SMART Retrieval System – Experiments in Automatic
Document Processing. Englewood Cliffs, New Jersey: Prentice Hall 1971.

	Information Retrieval Methods for Literary Texts
	
	1. Introduction
	2. Text representation
	3. Indexing and retrieval
	4. XML retrieval
	5. Summary and conclusion
	References

